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The inviscid interaction of two-dimensional vortex flows with a free surface is studied 
numerically using a combined vortex/boundary integral technique. The vorticity is 
modelled as point vortices, vortex sheets and finite area vortex regions. Two 
problems are studied in considerable detail, the head-on collision of a vortex pair 
with a free surface and the large-amplitude Kelvin-Helmholtz instability of a 
submerged shear layer. The interaction is controlled by a Froude number and by the 
geometric parameters describing the initial vortex configuration. In the large- 
Froude-number limit, the surface motion follows the vortical flow, but depends only 
weakly on the actual value of the Froude number. For low Froude numbers, the free 
surface remains almost flat, and the disturbances caused by the vortical flow decrease 
rapidly with Froude number. 

1. Introduction 
The classical approximation in water wave theory is the assumption of irrotational 

fluid motion. This assumption not only makes the problem much more tractable but 
the results also account well for observations. While the motion of waves may 
generally be irrotational, anyone observing a river or ship wakes knows that vortical 
flow below the surface can generate surface deformations. The surface motions due 
to the wake left by objects moving on a free surface have recently been the subject 
of several investigations. The motivation comes to a large extent from observations 
by remote sensing techniques, which show that in addition to the wave pattern 
analysed by Kelvin nearly a century ago, ships often leave a narrow mark that 
persists for several hours. The narrow angle of the mark rules out Kelvin wakes, and 
although it is not completely clear whether subsurface motion or an alteration in the 
surface water composition leaves the detectable mark, the cause is likely to be the 
fluid motion in the wake. The wake consists of rotational, turbulent, high-Reynolds- 
number flow, and coherent motion could last for a very long time. In  an effort to cast 
some light on the basic mechanisms governing the interaction of vortical flows with 
a free surface, we present here the surface signature of two simple vortical flows using 
an inviscid, two-dimensional model. 

Sarpkaya (1986) experimentally studied the surface deformation due to the vortex 
system behind a lifting surface. He identified two types of surface disturbance which 
he called scars and striations. The scars are surface depressions that appear as a pair 
behind the body parallel to the direction of motion. These marks appear to be 
directly related to the trailing vortices and may be two-dimensional in a plane 
perpendicular to the motion (known as the Trefftz plane to aerodynamicists). The 
striations, on the other hand, are perpendicular to the direction of motion and have 
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a more three-dimensional character. Similar experiments have been performed by 
Hirsa (1990), who also studied the surface deformation due to (essentially) two- 
dimensional vortex pairs. The two-dimensional vortex pair has also been studied by 
Sarpkaya, Elnitsky & Leeker (1989). An earlier experiment on the collision of two- 
dimensional vortex pairs with a free surface was reported by Barker & Crow (1977), 
but in that work the main emphasis was on the vortex motion, rather than the 
surface deformations. Bernal & Madnia (1989) investigated the generation of surface 
waves due to a shear flow by considering a jet below a free surface, and Bernal & 
Kwon (1989) studied the interaction of a vortex ring with a free surface. Previously, 
Davies (1966) and Davies & Driscoll (1974) reported on experiments with vortex 
rings colliding with a free surface; they primarily addressed the rate of surface 
renewal and the effect of surface contaminants. 

Analytical investigations of vortexlfree surface interactions are, of course, limited 
to rather simple situations. Linearized solutions exist for flow over a fixed vortex 
(e.g. Kochin, Kibel & Roze 1964) and for a vortex moving freely under a free surface 
(Wehausen & Laitone 1960), while Novikov (1981) discusses the generation of linear 
waves due to a periodic array of point vortices. For the full nonlinear solutions, it is 
necessary to turn to numerical techniques. Tryggvason (1988) presents a brief 
numerical study of surface deformation due to the roll-up of a submerged vortex 
sheet, and the motion of a point vortex pair toward a free surface has been simulated 
by Sarpkap et al. (1989) and Telste (1989) using a generalized boundary 
integral/vortex method developed by Baker, Meiron & Orszag (1982). Marcus (1988) 
simulated the same problem by a finite difference technique. Willmarth et al. (1989) 
simulated the formation of a vortex pair from an initially flat vortex sheet and 
compared their calculation with experimental results. 

The generation of wake vorticity by ships is reasonably well understood. Saunders 
(1965) discusses the overall character of the vortices left by a ship, and Lugt (1981), 
in his excellent survey of vortex motion in ship hydrodynamics (as well as in his more 
general exposure of vortex motion, 1983), gives several examples. Additional 
discussions of the various types of vortices shed from ships may be found in Dagan 
& Tulin (1972), for example. 

Considerable progress has been made in numerical simulations of the nonlinear 
evolution of large-amplitude surface waves during the last decade. Among the first 
calculations of large-amplitude surface waves by boundary integral methods are 
Longuet-Higgins & Cokelet’s (1976) calculations of the large-amplitude motion of a 
breaking wave and Salvesen & Kerczek’s (1976) calculation of the steady two- 
dimensional potential flow past a submerged line vortex. These methods have now 
reached sufficient maturity such that simulations of two-dimensional large-amplitude 
surface waves are relatively routine; see, for example, Vinje & Brevig (1981), Dold 
& Peregrine (1986), and Schultz (1987). A general method for flows with arbitrary 
stratification and an efficient iterative solution technique is presented by Baker et al. 
(1982). For a general review of vortex methods for two-dimensional flows, see 
Leonard (1980) and Sarpkaya (1989). 

In this paper, we study the generation of surface disturbances by a submerged 
vortical flow and the effect of the free surface on the evolution of the vortical flow. 
The flow is assumed to be inviscid, incompressible, and two-dimensional, and a 
combined vortex/boundary integral technique is used. The vorticity is modelled as 
point vortices, vortex sheets, and finite area vortex regions. Two problems are 
studied in considerable detail: the head-on collision of a vortex pair with the free 
surface and the large-amplitude Kelvin-Helmholtz instability of a submerged shear- 
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layer. Some aspects of both problems have already been studied numerically, see 
Tryggvason (1988), Marcus (1988), Sarpkaya et al. (1989), Telste (1989), and 
Willmarth et al. (1989). But here, we extend these investigations considerably to 
different vortex models and wider parameter ranges, and we draw some general 
conclusions. We deal exclusively with free-surface problems, but several of the same 
phenomena may be observed if the free surface is replaced by a density interface. For 
one such problem, see Dahm, Scheil & Tryggvason (1989). 

The rest of the paper is arranged as follows : $2 discusses the mathematical model, 
the numerical method, and the relevant dimensionless parameters. The method is a 
straightforward extension of the method described by Baker et al. (1982) ; hence, we 
only give a brief description. In $3 we present our results, first for the head-on 
collision of a vortex pair with the free surface, then for the large-amplitude 
Kelvin-Helmholtz instability of a shear layer. The large-amplitude stage for several 
values of the control parameters is shown, and various diagnostic quantities are 
discussed. Our conclusions appear in $4. A short account of some of the work 
reported here was presented a t  the American Physical Society, Division of Fluid 
Dynamics, Annual Meeting at  SUNY, Buffalo (Song, Yu & Tryggvason 1988). A 
brief discussion of preliminary results can be found in Tryggvason (1988, 1989) and 
Willmarth et al. (1989). 

2. Problem formulation and numerical method 
The formulation of inviscid, free-surface problems in terms of generalized vortex 

sheets is well known, so only a brief discussion will be given here. For a fairly 
complete discussion, refer to Baker et ul. (1982). 

In all our calculations, we use a computational domain of width = 1, with periodic 
horizontal boundary conditions. The velocity due to a (generalized) vortex sheet of 
strength y is then calculated by 

q*(s)  = u-iv = - y(s)cotn(z(s')-z(s))ds'+q&,, liJ, 
where the integral is over both the free surface and the vortex sheet. Here, B is an 
arclength coordinate along the sheet, z(s) = z(s) + iy(s) is the position of an interface 
point, q* = u - iv is the conjugate of its complex velocity, and qzxt is the velocity due 
to boundary conditions, or vorticity not confined to a vortex sheet. We generally 
follow Baker et al. (1982) and integrate the dipole sheet strength, ,u = (q5i is 
the velocity potential in fluid i), in time and find y = ap/as. The evolution equation 
for ,u is found by subtracting the Bernoulli equation on each side of the sheet, which 
yields 

P 2  - P1 

Here, pa is the density in fluid i, g is the acceleration due to gravity, K is the curvature, 
u is the surface tension coefficient, A is the Atwood ratio, (pl - p Z ) / ( p l  +pz) ,  and @ is 
the average of the velocity potential on either side of the integral. To find d@/dt, we 
take the Lagrangian time derivative of the real part of Cauchy's integral formula for 
a periodic domain 

W(z)  = p(s')cot~~(z'-z)dz', (3) 
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and substitute the result into (2) to obtain an integro-differential equation for the 
evolution of /I. 

To extract the appropriate dimensionless parameters, we cast the above equations 
into non-dimensional form. We construct our timescale from the characteristic 
length of the rotational flow, L,  and the characteristic velocity, T / L ,  where r is a 
circulation describing the total strength of the vorticity field. A timescale is then 
given by L 2 / r .  With the non-dimensional variables, denoted by a tilde, defined as 

(z,Y) = L(W, t = ~ ~ / r i ;  (w = r/L(q“,T), = r@,$, (4) 

the non-dimensional form of the equation for the vortex sheet strength becomes 
(dropping the tilde) 

where Fr = (Tz/gL8)i is a Froude number, and We = ApT2/aL is a Weber number. 
The non-dimensional groups specifying our problem are therefore the Froude 

number, F r ;  the Weber number, We;  and the geometric parameters describing the 
initial condition. The Atwood number, A ,  is always equal to unity for the free-surface 
case studied here, and in most of our calculations we assume an infinite Weber 
number. Our scaling, equation (4), essentially ignores the presence of the free surface, 
and the same non-dimensional time therefore means that the vortex sheet 
evolution has progressed equally far, independent of Fr. Obviously, this is not the 
only possible scaling. We could also base our non-dimensionalization solely on the 
free surface, in which case the basic non-dimensional parameter would be a non- 
dimensional vortex strength equivalent to the Froude number. The timescale would, 
however, be different. We feel that the current ‘vortex scaling’ is the reasonable one, 
since the vortical flow is what drives the motion. We should note that in Tryggvason 
(1988), as well as in Dahm et al. (1989), the basic non-dimensional parameter is 
written as R = gL3//rz = l/Fr2. Clearly, there is a one-to-one correspondence with 
the current notation. 

In  those calculations where the vorticity is modelled as vortex sheets, we represent 
the sheets by vortex blobs to prevent the formation of a singularity and to eliminate 
short-wave instabilities. Krasny (1986) shows that in contrast to simulations that do 
not employ any regularization, vortex-blob methods, for any finite blob size, produce 
smooth, well-behaved vortex sheets for sufficiently accurate calculations. The 
evolution in the vortex centre will depend on the blob size, but the effect on the large- 
scale structure is minimal. Most of our results have been checked for the influence of 
the blob size, and the results presented are insensitive to the exact value of the blob. 
In the interest of brevity, these checks are not included in this paper, and can be 
found in Yu (1990). For further discussions of the vortex blob regularization, the 
reader is referred to Krasny (1986, 1988). 

Occasionally, a saw-tooth instability on the free surface appears in our 
computations. This instability is common in boundary integral calculations and can 
generally be controlled by a slight smoothing, see Longuet-Higgins & Cokelet (1976). 
I n  those runs where such filtering is required, it is employed rarely at the beginning 
of the calculation and more frequently later. We have found that the dipole 
formulation, described above, is more robust than the vorticity formulation, which 
was used for the calculations in Tryggvason (1988, 1989). The simulations generally 
had to be terminated when the free surface formed a sharp corner and difficulties in 



The free-surface signature of unsteady, two-dimensional vortex f l w s  551 

obtaining rapid convergence were experienced. Although we expect such segments of 
high curvature to indicate a region where our inviscid model no longer accurately 
reflects the underlying physical problem (small-scale phenomena such as viscosity 
and surface tension have been ignored), we should note that there is not a direct 
relation to loss of convergence and, say, wave breaking. Occasional redistribution of 
the free-surface points is used in some of our runs, and time integration is done by 
STEP from Shampine & Gordon (1965). 

In several of our calculations we take the vorticity to be patches, or strips, of 
uniform vorticity (called Finite Area Vortex Regions (FAVRs) by Zabusky, Hughes 
& Roberts 1979). Because of some mathematical difficulties in calculating D@/Dt in 
(2), we integrate the vortex sheet strength directly, as done by Tryggvason (1988), 
instead of using the dipole formulation as in the other calculations. The evolution 
equation for the vortex sheet strength of the free surface is obtained either by 
differentiation of (2) or by subtracting the tangential component of the Euler 
equations on either side of the interface. This equation contains duldt,  which is given 
by the Lagrangian time derivative of the Biot-Savat law and the velocity 
contribution from the FAVRs : 

&.&) = u(z)+iv(z) = - (log1sinz(z-z’)l)dz’. (6) 2x  “f 
Here, the integral is over the boundary of the region containing a uniform vorticity, 
w .  

3. Results and discussion 
3.1. Vortex pair approaching a free surface 

Motivated by the experiments of Sarpkaya (1986) and Hirsa (1990), we consider a 
vortex sheet with a vortex sheet strength corresponding to a wing with elliptic 
loading and a negative angle of attack; the vortex sheet lies at  a relatively small 
initial depth below the free surface (1.25 non-dimensional units). This vortex sheet 
rolls up into a vortex pair that propagates upward. The length in the definition of the 
Froude number is taken as the separation that the vortices would have in the absence 
of a free surface, estimated by assuming that the sheet will become a pair of point 
vortices. The free surface and the vortex sheet are discretized by 200 points each. To 
regularize the vortex sheet, we use the algebraic vortex blob employed by Krasny 
(1986) to represent the sheet ; the vortex blob radius, 8, is relatively large and equal 
to 0.5 times the separation between the vortices. Several of our vortex sheet runs 
have been repeated with different blob radii, as well as different numbers of 
computational points, to confirm that the effect of finite 6 is minimal and confined 
to the vortex cores, see Yu (1990). 

Figure 1 shows the evolution of the vortex sheet and the free surface for three 
different Froude numbers. The first sequence, (a), is for a strong Froude number of 
11.2; the second one, ( b ) ,  is for an intermediate Froude number, 3.54; and the last 
one, ( c )  is for a low value of 1.58. The vortex blobs representing the vortex sheet are 
connected by straight lines in these figures, except where the sheet has undergone 
large stretching and the points are left unconnected. The Froude numbers in figure 
1 have been selected because the evolution in each case is representative for a range 
of Froude numbers. Strong vortices, as in (a),  are little affected by the surface during 
the time shown here. As the vortex pair approaches the surface, it pushes the surface 
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FIGURE 1. The collision of a vortex pair, formed from a vortex sheet, with a free surface. The 
initial depth d/L = 1.25. The non-dimensional times are 0, 3.0, 6.0, 9.0 and 10.5. (a) Fr = 11.2; 
( b )  FT = 3.54; ( c )  FT = 1.58. 

upward, and subsequently, the pair propagates out of the main fluid region, carrying 
a considerable amount of fluid with it. At  the same time, since the length of the 
period is finite, the level of the fluid left behind drops to conserve mass. The speed 
of the vortex pair is minimally affected by the presence of the free surface. 
Baroclinically generated vorticity at  the free surface obviously opposes the vortex 
motion, but a t  the same time pushes them slightly together, compensating for the 
effect of the surface. Shortly after the last stage shown, the iterative procedure failed 
to converge, and the calculations were terminated. In ( b ) ,  the initial surface 
deformation is similar to the high-Froude-number case, but after the initial bump 
forms, the vortices start to move apart and the rise of the fluid stops. At  the same 
time, the interface is rapidly pulled down in front of the vortices. For the low Froude 
number in (c), the surface deformation is reduced, and the vortices move outward 
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(4 (b) (4 
FIQURE 2. The late-time solution for the collision of a finite area vortex pair and a point vortex pair 
with a free surface. The initial depth d/L = 1.25. The initial diameter of vortex patch, t /L,  is 0.45 
in the top row, 0.3 in the middle one and the bottom row contains the point vortex results. (a) 
Fr = 11.2; (b)  Fr = 3.54; (c )  Fr = 1.58. The non-dimensional time is 10.0in (a) and (b ) ,  and 9.0in (c). 

much like the surface was a solid wall. A depression forms in front of the vortices and 
eventually leads to overturning and entrainment of the top fluid. 

As is well known, vortex blobs, as we have used to represent the sheet are not exact 
solutions of the Euler equations. Furthermore, even though the vortex blob 
representation converges to a vortex sheet at early time (Caflisch & Lowengrub 
1989), it is not known whether the vortex blob results converge a t  large time. To 
investigate the effect of different core structures, as well as to present results that are 
not subject to the above-stated deficiency (of not being exact solutions of the Euler 
equations), we have repeated the calculations with the vortices modelled as vortex 
patches, or finite area vortex regions (FAVRs). There is now an additional geometric 
lengthscale, namely, the size of the vortex patch. In addition, we have modelled the 
vorticity as point vortices, as done by Telste (1989) and Sarpkaya et al. (1989). In 
figure 2, we show the results a t  late time for three different Froude numbers: 11.2 in 
the left column, 3.54 in the middle one, and 1.58 in the right column (the same as in 
figure 1 )  for runs with two different patch radii and point vortices. The time is 10.5 
for the larger Froude numbers, and 9.0 for the lowest Froude number. In  the top row 
the diameter of the patch is 0.45 times the separation of the centres, and in the 
middle row the diameter is 0.3 times the separation. The results for the point vortices 
are in the bottom row. The initial depth is 1.25 times the separation, the free surface 
is discretized by 300 computational elements, and the bounding curve of each vortex 
patch is discretized by 100 elements. 

Generally, these results correlate well with the vortex sheet calculations in figure 
1. For the highest Froude number, the fluid blob carried with the large patch is 
slightly wider, but lower, than that for the patch with a smaller diameter and for the 
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FIGURE 3. The late-time solution for the collision of a point vortex pair with a free surface. 
(i) Fr = 11.2; (ii) Fr = 15.8; (iii) Fr = 22.4; (iv) Fr = 0.50; (v) Fr = 0.79; (vi) Fr = 1.58. The non- 
dimensional time is 10.0 in (i), (ii), and (iii) and 9.0 in (iv), (v), and (vi). In all c w s ,  d / L  = 1.25. 

point-vortex case. This could be partly due to some of the vorticity actually being 
left behind in the neck that connects the fluid blob with the rest of the fluid. For the 
intermediate Froude number, there is also very little difference between the small- 
patch and the point vortex results, but the spike of top fluid pulled down at  the outer 
edges of the vortices is thinner for the large patch. In the small-Froude-number case, 
again, the difference between the middle and the right column is small, but for the 
large patch a slight reduction in the surface amplitude is apparent. For all Fr, there 
is almost an exact agreement between the point-vortex case, the small-patch case, 
and the vortex sheet calculations in figure 1 .  This, of course, does not come as a 
surprise, since the elliptic vortex sheet distribution leads to a rather concentrated 
vorticity distribution, once roll-up is completed. 

The results in figures 1 and 2 obviously show that the surface deformation depends 
strongly on the Froude number. To assess the dependency in more detail, we have 
run several cases for Froude numbers both larger and smaller than those shown in 
the previous figures; in most cases we use point vortices to model the vortical flow. 
These runs show that the evolution can be classified two ways : (i) the large-Froude- 
number case, where the vortices propagate through the free surfaces, as in figures 
1 (a) and 2 (a) and (ii) the small-Froude-number case, where the free surface acts like 
a rigid boundary, as in figures 1 (c) and 2 (c ) .  The transition from one type of motion 
to another takes place over a relatively small range of Froude numbers, and once 
these limits are reached the motion is relatively weakly dependent on the actual 
value of the Froude number. 

In figure 3, we have plotted the solutions a t  late time for several ‘high’ Froude 
numbers and several ‘ low ’ Froude numbers. Frames (i) , (ii) , and (iii) are at  time 10 for 
Froude numbers 11.2 (as in figures l a  and 2a), 15.8 and 22.4, respectively. It is 



The free-surface signature of unsteady, two-dimensional vortex flows 555 

0.9 

0.8 

0.1 

0.6 

0.5 

0.4 

0.: 

0.; 

0. I 

a 

I 

I 

-1 
2 4 6 8 1 0 1 2  

0.030 

0.025 
(ii) 

(iii) u 0.020 

0.015 

0.010 

0.005 

0 2 4  6 8 1 0 1 2  

O.OOO4 

0.0003 (‘) 

0.0003 

0.0002 

0.0001 

(Vi) 
o-ooolL 0 

0 2 4 6  8 1 0 1 2  

FIGURE 4. (a) The maximum and minimum free-surface elevations for the runs in figure 3 versus 
time. ( b )  The potential energy for the ‘high’ Froude numbers (11.2, 15.8 and 22.4) versus time. (c) 
The potential energy for the ‘low’ Froude numbers (1.58,0.79 and 0.5) vemus time. The profiles 
correspond to the frames in figure 3. 

obvious that doubling the Froude number has rather minor effects. Frames (iv), (v), 
and (vi) are for Froude numbers 0.5, 0.79 and 1.58 (as in figures l c  and 2c) at time 
9.0. Although the overall shape of the surface deformation is similar, some changes 
occur as the Froude number decreases; in addition, the amplitude becomes smaller. 
A closer inspection (substantiated by additional runs) shows that the position of the 
maximum surface depression is closer to the vortex for the lower Froude number, so 
that in the limit of zero Froude number we would expect the depression to coincide 
with the vortex position. This is in agreement with what we observe in the next 
section and with Novikov’s (1981) analytical, small-amplitude prediction for a 
vortex moving steadily below a free surface. 

To demonstrate some of our conclusions more clearly, in figure 4 we plot both the 
maximum and minimum amplitudes, as well as the potential energy versus time, for 
the runs in figure 3. The maximum and minimum surface elevations are shown in 
figure 4(a). The maximum surface elevation for the large Froude numbers increases 
continuously, while for the lower Froude numbers the elevation reaches a maximum 
at a much lower level and changes only slightly during the last part of the run. Notice 
in particular the insensitivity of the high-Froude-number cases to the Froude 
number. We should note that the significant drop in minimum elevation for the high- 
Froude-number case is mostly due to the finite extent of our computational box. For 
larger boxes, the removal of a fluid blob from the main fluid region results in much 
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FIGURE 5. The path of the point vortices for (a) Fr = 11.2; (b )  Fr = 3.54; ( c )  FT = 1.58 (the bottom 
row in figure 2). The distance between the dots on each line marks a time interval of 1.0. 

smaller changes in the level of the fluid left behind. The plots of potential energy 
versus time, in figures 4 (b )  and 4 ( c ) ,  reflect the amplitude of the surface motion of the 
cases plotted in figure 4(a). (Note that the scale is different for the graphs in figures 
4(b)  and 4(c).) For the large Froude numbers, the potential energy increases 
continuously, reaching an approximately constant growth rate at  the end of the run. 
In the case of small Froude numbers, the growth is oscillatory and considerably 
smaller. The oscillations in this case are presumably partly due to transients set up 
by the impulsive generation of the rather shallow point vortices. 

To show the effect of the surface on the vortical motion, in figure 5 we plot the path 
of the vortices for Froude numbers 11.2, 3.54 and 1.58. Dots on the path at  regular 
time intervals equal to 1.0 give an indication of the speed. In the large Froude 
number case, where the vortices penetrate the interface, the paths converge, and the 
reduction in distance between them more than compensates for the reaction from the 
surface, so that their speed actually increases, The vortices in the low-Froude- 
number c&8e move outward, as if the surface was a solid wall. However, their path 
differs slightly from the solid-wall case, owing to the surface deformations, and a 
small rebounding is seen. The intermediate path first diverges slightly and then turns 
inward. These calculations could not be continued past the point shown, but we 
expect that the vortex would eventually complete a loop and move outward. Such 
behaviour is observed for vortices encountering weak density interfaces, see Dahm 
et al. (1989). 

We have repeated many of our calculations with a higher number of computational 
elements and monitored the energy balance to assess the accuracy of our methods. 
For the range of computational elements used here, doubling the number of elements 
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has virtually no effect. The accuracy of our calculations is also reflected by the almost 
total conservation of energy, which is generally a rather sensitive measure of the 
quality of a solution. In addition, we have compared our calculations to those 
reported by Telste (1989). He uses a similar method but applies a damping layer at 
the edge of his computational domain to model an infinite horizontal length. His 
results for Froude numbers 7.07,2.24 and 0.5 and an initial vortex depth five times 
the vortex separation agree well with what would be expected from the simulations 
presented here. Telste also found energy to be well conserved for the time he 
simulated. The influence of the relatively small computational box has also been 
checked by repeating the calculations in both a narrower and a wider box. Although 
these tests show that the box width has some influence on the evolution (for example, 
the wider the box, the less the level of the lower fluid drops for large Froude 
numbers), the essential interaction mechanism remains unchanged for all but the 
narrowest boxes, We therefore firmly believe that the results obtained here for a 
finite horizontal fluid domain are representative for infinite domains as well and that 
our conclusions from these studies apply equally to that case. For a more detailed 
discussion of these tests, see Yu (1990). 

The inviscid models studied here are all scale invariant and, thus, are applicable 
to a wide range of physical lengthscales. In the wake of a ship, for example, we would 
generally expect that while the results for small Froude numbers might describe the 
largest scales of the flow, the high-Froude-number results, where the vortical flow 
leads to rather dramatic ‘splashes’, would be more applicable to the small-scale 
turbulent motion (such as the generation of ‘white water wakes’ due to propellers). 
At small scales, however, the scale invariance of the inviscid model is broken by 
either viscosity or surface tension. While viscosity is not easily incorporated into our 
model, surface tension is. The effect of surface tension on the free-surface 
deformations due to the collision of a strong point vortex pair is shown in figure 6;  
here we compare the late time stage ( t  = 9.8) of three simulations with a Froude 
number of 11.2 for We = 1.0, We = 3.0, and an infinite Weber number. The increased 
surface tension reduces the growth of the surface deformation and leads to a larger 
separation of the vortices. For even smaller Weber numbers, the surface deformation 
is largely inhibited, but several short waves appear on the surface. These waves could 
be capillary waves, but we have not ruled out numerical difficulties as a cause. Large 
surface tension results in a very stiff system, and minute timesteps are necessary. 

3.2. Shear layer under a free surface 
We now consider a free surface with flow parallel to the surface. At depth d there is 
a shear layer such that the velocity changes abruptly. Our frame of reference moves 
with the average of the velocity above and below the shear layer, so that a vortex 
generated by a large-amplitude Kelvin-Helmholtz instability would be stationary if 
the free surface was absent. The period length, L,  is taken as a lengthscale, and the 
evolution is governed by the Froude number, the relative depth of the shear layer, 
d/L,  and, possibly, the internal structure of the layer. 

The shear layer is first modelled as a vortex sheet across which there is a 
discontinuous change in the tangential velocity. Figure 7 shows the vortex sheet and 
free surface for several times. Here, Fr = 0.5 and d / L  = 0.2. The free surface is 
represented by 200 computational elements, and the vortex sheet by 200 vortex 
blobs ; we use 6 = 0.1 in this case. The free surface is initially Bat, but the vortex sheet 
is perturbed slightly by a single wave. As the vortex sheet rolls up, the induced 
velocity causes a depression in the free surface that remains relatively stationary 
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FIGURE 6. A comparison of the evolution of a free surface for different surface tension and 
Pr = 11.2. Non-dimensional time is 9.8. -, We = 1.0; ---, We = 3.0; ---, We = CO. 

slightly to the front (or left) of the vortex. As the amplitude grows, the trough 
becomes steeper on its left side and eventually turns over, suggesting a breaking 
wave. Note that for this particular selection of governing parameters, the surface 
mark is a single, relatively localized depression in the free surface. 

To investigate the effect of the two control parameters, the Froude number and the 
relative depth, we have made a large number of simulations. The results from some 
of these runs are presented in figure 8, which shows the free-surface profile for various 
Froude numbers, from 2.83 to 0.177, a t  a relative depth of d / L  = 0.2 in the first 
column, d/L = 0.3 in the middle one, and d / L  = 0.4 in the last column. The time is 
1.25 for the first column, 1.6 for the second, and 2.0 for the third; for the highest 
Froude numbers we have also plotted the surface a t  a later time, which is noted in 
the figure where relevant. Some of the profiles have been amplified several times, as 
indicated. 

Several changes occur as the governing parameters are varied. First of all, the 
overall magnitude of the surface deformation decreases both with decreasing Froude 
number and increasing depth. For high Froude numbers and shallow vortex sheets 
the free surface is pulled down into the fluid, but for deeper vortex sheets (and high 
Froude numbers) the depression is pushed left to the boundary of the periodic 
domain, and no entrainment occurs. At the earlier times, the results for highest 
Froude numbers are relatively independent of the Froude numbers for a given d / L ,  
with the possible exception of the deepest vortex sheet case where the times shown 
are relatively large. As the Froude number is decreased, the maximum depression 
moves toward the centre in all cases and the free surface becomes more localized. The 
left-hand side of the depression becomes steeper and appears to lead to a breaking 
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FIQURE 7. The evolution of a free surface and a submerged vortex sheet for Fr = 0.5, d/L = 0.2. 
Here 6 = 0.1. 

wave for Fr = 0.5 and all depths, and also for lower Froude numbers, when the 
vortex sheet is shallow. As the Froude number is reduced further, the steepening of 
the left-hand side of the trough leads to a generation of smaller waves instead of a 
single breaking wave. For the lowest Froude numbers, particularly in the deep case, 
the overall appearance of the surface deformation is similar, but the amplitude 
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FIGURE 8. A large-amplitude stage for various values of the non-dimensional parameters. From top 
to bottom, Fr = 2.83,1.41, 1.0,0.5,0.354,0.25,0.177. The non-dimensional times are approximately 
1.25 for d/L = 0.2, 1.60 for d/L = 0.3 and 2.0 for d/L = 0.4. 

decreases with Froude number. When the vortex sheet is very weak and deep, the 
main surface mark is a single shallow depression directly above the vortex. 

In order to demonstrate better some of the characteristics of the evolution, in 
figure 9 we plot some quantitative information for the runs in figure 8. For clarity, 
the figure is divided into three columns, as figure 8, according to the value of dlL. The 
numbers in each column correspond to the profiles in figure 8, counted from top to 
bottom. The maximum and minimum surface elevations are shown in figure 9(a).  
The trend observed in figure 8, that the magnitude of the disturbance decreases with 
decreasing Froude number and increasing depth, is clear from the plot. Notice, in 
particular, that the results for large Froude numbers (profiles 1, 2, and 3) are all in 
good agreement with each other for a relatively long time (up to at least t = 1.0), 
although eventually they diverge. For high Froude numbers, and the shallower 
sheets, the maximum amplitude eventually reaches a maximum, while the depth 
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FIGURE 9. (a) The maximum and minimum free-surface elevations versus time for the cases in 
figure 8. (6) The horizontal location of the maximum free-surface depth versus time for the runs in 
figure 8. In each frame the numbers correspond to the profiles in figure 8 (counted from top to 
bottom). 

continues to increase for the duration of the calculations, suggesting entrainment of 
air into the water. For the lower Froude numbers (profiles 4-7), the growth of the 
surface disturbance is much slower and shows a continuous dependency on the 
Froude number. 

In  figure 9 ( b ) ,  the horizontal location of the maximum depth of the free surface is 
plotted. Initially, when the amplitude is still infinitesimal, the depression is slightly 
to the left of the vortex (which is at  0.5) for all cases. At  high Froude numbers, this 
depression moves further to the left, but for lower Froude numbers it moves to  the 
right, closer to the vortex. For shallow vortices, this motion to the right eventually 
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reverses, and the depression again moves away from the vortex, but for deeper 
vortices the depression seems to stabilize close to the vortex (right above the vortex 
in the case of the lowest Froude number). Notice that, up to about t = 0.75, the 
motion, while strongly dependent on the Froude number, is virtually independent of 
the depth. Also, for a fixed time, there is a much greater difference in the location of 
the depression for the deep vortices than for the shallow ones. In some sense, the 
shallow vortices appear to attract the depression to a fixed location independent of 
the Froude number. The slight oscillations for low Froude numbers and deep vortex 
sheets are indicative of the generation of shorter, smaller waves. Again, note that the 
results for large Froude numbers are essentially identical until a t  a relatively late 
time. 

Based on figures 8 and 9 the results may be summarized as follows : for very strong 
vortex sheets, the free surface moves essentially as a material line for a long time 
compared with the time it takes the instability of the vortex sheet to develop. 
Depending on the value of d/L,  two things can happen. If the relative depth is small, 
so the surface passes through the region of fluid that is trapped around the vortex 
(for a periodic row of point vortices this depth is about 0.28 times the separation of 
the vortices), the vortex will pull the surface down and the lighter (zero density) top 
fluid will be entrained in the bottom fluid. If  the free surface is above the streamline 
enclosing the trapped fluid, the vortex cannot pull the fluid down, and the surface 
will simply move until it coincides with a curved streamline above the vortex. The 
maximum elevation will then be directly above the vortex. As the Froude number 
decreases, the ability of the vortex flow to deform the surface is reduced. This 
manifests itself first in the formation of a breaking wave, and then, a t  lower Froude 
numbers, in the generation of shorter waves. For deep vortex sheets, the generation 
of short waves seems to take longer as the Froude number is reduced, and it is likely 
that the limiting case at Fr --f 0 is simply a slight stationary depression above the 
vortex. 

Although the effect of the size of the vortex blob is minimal in most of the cases 
considered (see Yu 1990), the solution with a finite blob is not exactly a solution to 
the Euler equation, as mentioned before; furthermore, there is no direct relation 
between the size of the blob and a physical stabilization mechanism such as a finite 
thickness. To investigate the effect of a finite thickness, we have repeated several of 
the simulations in figure 8 using a layer of uniform vorticity, i.e. finite area vortex 
regions (FAVRs), to model the shear layer. (For a study of roll-up of a layer of 
uniform vorticity in the absence of a free surface see e.g. Pozrikidis & Higdon 1985). 
Figure 10 shows the solution at  large time for several Froude numbers and depths. 
The top two frames are for Fr = 1.0 and d / L  = 0.2 (the depth is to the middle of the 
layer), the middle two frames for Fr = 0.5 and d / L  = 0.3, and the bottom frames for 
Fr = 0.354 and d/L = 0.4. The frames on the left-hand side are for an initial layer 
thickness t/L = 0.1, and the ones on the right-hand side for t /L = 0.15. The times all 
differ, but the right-hand column has the larger times (the exact times are indicated 
in the figure). While the evolution is similar to the corresponding vortex sheet run 
(figure 8), the deformation rate is smaller for the finite layer. We note that vorticity 
layers of finite thickness have a most unstable wavelength (at t /L a 0.127) as 
opposed to vortex sheets, which are most unstable for shorter disturbance lengths. 
Since the thickness in our simulations is close to this value, the slower growth of the 
disturbances in figure 10 is presumably a more realistic prediction for a real shear 
layer than the vortex sheet simulations in figure 8. 

In figure 11, the maximum and minimum amplitudes are plotted in the left-hand 
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column versus time and compared to-the corresponding vortex sheet runs. The 
amplitude growth obviously depends on the thickness, with the thinner layers in 
reasonable agreement with the vortex sheet calculations for the lower Froude 
numbers. The horizontal position of the maximum depth, plotted in the right column 
in figure 11, is also in reasonable agreement for the shear layer and the thinner vortex 
layer for Fr = 1.0,0.5 and 0.354 (i.e. motion to the left for shallow layers, and to the 
right for deep layers). The general conclusion is that we may expect some 
dependency on the internal structure of the shear layer, but for thinner layers, in 
particular for low Froude numbers and deep vortex sheets, the surface signature will 
be closer to the one generated by the vortex sheet model. 

During the initial stage in all cases, and for a long time when the vortex sheet is 
deep and weak, the surface deformation is quite small. It is therefore natural to ask 
whether linear analysis is applicable under these circumstances. Unfortunately, it is 
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FIQURE 11. Comparison of the finite thickness runs in figure 10 with the corresponding vortex-sheet 
calculation. The left-hand column : the maximum and minimum free-surface elevations versus 
time. The right-hand column : the horizontal location of the maximum frec-surface depth versus 
time. 1 indicates the corresponding vortex sheet run, 2 the thinner vortex layer, and 3 the thicker 
one. 

not. The vortex sheet evolves far into the nonlinear region, and analysis for the linear 
stage of the roll-up would cover only a very short time interval with respect to the 
surface evolution. Motivated by the observation that the roll-up is initially 
associated with a strong advection of vorticity toward the vortex centre, but once 
the vortex forms, the vortex undergoes only moderate changes, we have studied the 
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FIUIJRE 12. The evolution of a free surface due to a single point vortex ; Fr = 0.125, &/L = 0.4. The 
non-dimensional times are approximately 0.5, 1.0, 1.5, 2.0 and 2.5. Profile (a): r=  r,. Profile ( b ) :  
r = r,(l -e-1.5t). The amplitude is magnified 20 times. 

surface disturbances of a vortex that is started impulsively for several depths and 
Froude numbers. As expected, the general surface signature is similar to the one 
generated by the shear layer, and the trend when the parameters are changed is the 
same. However, the quantitative agreement with the shear-layer calculations is 
generally not good. The main reason is that in the transition zone, where the inertial 
forces due to the vortical flow and the force of gravity are comparable, the detailed 
nature of the generation of a relatively concentrated vortex may be of considerable 
importance for the surface signature. To demonstrate this effect, we present two 
point vortex calculations in figure 12. In the first calculation, we simply assume that 
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FIQURE 13. The effect of surface tension on the large-amplitude stage for d/L = 0.2 and Fr = 1.0 
at non-dimensional time 1.25. -, We = 0.33; ---, We = 1.0; ---, We = CO. 

the vortex is generated instantaneously, but in the second case the vortex forms 
gradually, mimicking the finite roll-up time. Here, Pr = 0.125, d/L = 0.4 and results 
are shown at  times 0.5, 1.0, 1.5, 2.0 and 2.5. Since the surface motion is quite small, 
the amplitude is magnified 20 times, and only the free surface itself is shown. For the 
instantaneously generated vortex (figure 12a), short waves are generated, but for the 
vortex that starts gradually (figure 12b), only a single small depression forms. (The 
vortex has reached 0.9 times its final strength in the third frame.) The exact nature 
of the transient formation of a concentrated vortex from a shear layer may therefore, 
in general, have significant influence on the free-surface signature. Indeed, this is also 
the conclusion from our simulations of finite thickness shear layers in figure 10. We 
also mention that we have compared our point vortex calculations with linear 
predictions calculated by Hong (1988), and generally, we find good agreement under 
those conditions where agreement can be expected. These comparisons are presented 
in Yu (1990). 

As in the previous section, we have investigated the effect of surface tension on 
a single case. In figure 13, the large-amplitude solution at time 1.25 is shown for 
Fr = 1 and d/L = 0.2, corresponding to one of the runs in figure 8. The solid line 
indicates We = 0.33, the long dashed line is for We = 1.0, and the dashed line is the 
infinite-Weber-number solution from figure 8. The major effect of surface tension is 
that it reduces the surface deformation in the region of highest curvature. 

We end this section with simulations of more complicated situations : the pairing 
of vortices under a free surface and the collision of a vortex pair generated by a 
vortex sheet initially inclined with respect to the free surface. In figure 14, Fr = 1.0 
and d /L  = 0.3. The regularization parameter has been taken relatively large (6 = 0.2) 
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FIQURE 14. The surface signature of vortex pairing; Fr = 1.0, and d / L  = 0.3. 

to limit the number of computational elements needed to represent the inner part of 
the vortices. The vortex sheet is initially perturbed by two sine waves, one with a 
wavelength equal to the period length, and the other half as long and with three 
times the amplitude of the longer wave. First, the vortex sheet rolls up into two 
distinct vortices, and the surface deformation is similar to that predicted for a single 
wave in half the domain (Fr = 1/2  and d/L = 0.6). Then the vortices pair and 
drastically change the surface signature, making it more like that predicted for a 
single vortex at the same parameters. We have run similar cases, and generally we 
find that (i) for shallow vortices the pairing process quickly leads to high curvature 
that inhibits further simulations, and (ii) for deeper vortices the surface deformation 
is generally dominated by the pairing process. The experimental significance of this 
example is that in the absence of significant three-dimensional disturbances a weak 
shear layer might only produce large surface deformations after one or more vortex 
pairings have taken place. 

Figure 15 shows a collision of a vortex pair with a free surface when the vortices 
approach the surface at  an angle ; the main surface deformation is due to the vortex 
that first encounters the surface. As the first vortex interacts with the surface, the 
other continues to propagate, causing the line connecting the vortices to become 
more aligned with the surface. The resulting deformation is similar to that of a single 
vortex interacting with the surface and will not be discussed in detail. In  these 
particular calculations, the surface deformation leads to a breaking wave and the 
calculation could not be continued. We expect that a t  a later stage, both vortices will 
align with the surface, and the subsequent development will be more like the head- 
on collision problem. 

For most of the simulations discussed in this report, we have monitored several 
additional parameters, such as the surface slopes, surface velocities, and upwelling of 
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fluids with the vortex pairs, which might be of interest in detailed comparisons with 
experimental data. Generally, we find that while such data provides some additional 
insight into the problem, the qualitative trend is obvious from the solution plots and 
the data we have presented. Thus, we will postpone the presentation of these 
diagnostics until experimental data is available for comparison. Preliminary 
comparisons in the case of a head-on collision of a vortex pair with a free surface 
appear in Willmarth et aE. (1989). 

4. Conclusions 
For remote sensing, which provides the motivation for this study, the most 

important question is, how much can we tell about the submerged vortical flow from 
observations of the free surface ? Though it is likely that a complete solution to this 
inverse problem does not exist, the Froude number obviously has a great influence 
on the free-surface deformation due to vortex motion. In the vortex collison problem, 
the Froude number is the main controlling parameter, and the geometric parameters 
such as the initial relative depth and the core size appear to play minor roles (at least 
for the cases that we investigated). For the shear-layer problem, there was an 
additional controlling parameter, the relative depth. This parameter could have been 
eliminated by considering an infinitely long domain ; indeed, for the relatively 
shallow flows, the boundaries of the domain do not seem to influence the evolution 
significantly, except for the largest Froude numbers. Generally, it appears that the 
interaction can be classified either as a high- or a low-Froude-number motion. In the 
low-Froude-number case, the vortices interact with the surface as if it were a rigid 
wall. The surface deformations are relatively small, and their amplitude diminishes 
with decreasing Froude number. For transient motion in this limit, waves of 
wavelength different from the lengthscales of the vortical flows are sometimes 
generated. In the high-Froude-number limit, the vortices are sufficiently strong that 
they push the free surface around as if it were simply a passive marker. However, the 
result is a large surface deformation that eventually causes the surface motion to 
differ from what a passive interface would do. In this limit, the surface motion is 
directly related to the vortical flow, but, at  least initially, is only weakly dependent 
on the Froude number. Hence, given a shapshot of the free surface at a fixed time, 
and some minimal information about the vortex configuration, the corresponding 
Froude number can only be determined in the low-Froude-number limit (refer to 
figure 3). 

Physical intuition suggests that eventually some Froude number dependence will 
appear in the high-Froude-number limit, and this is what is observed for the shear- 
layer case but the calculations for the vortex pair collision could not be continued 
sufficiently far to establish what would happen eventually. For the vortex pair, it is 
likely that the scenario similar to the one observed by Dahm et al. (1989) for vortex 
collision with weakly stratified density interfaces takes place. The fluid accompanying 
the vortex pair is gradually ‘stripped’ away, and for the finite area vortex regions 
and the vortex sheet, the vortical fluid itself is eventually ‘thrown’ back by the 
ever increasing reaction from the surface. One may also speculate that in some cases 
the fluid blob will fall outward, as suggested by figure 2. In the case of the point 
vortices, however, such ‘stripping ’ cannot reduce the vorticity of the fluid, and 
indeed it seems more likely that the long-time behaviour is given by a point vortex 
pair pushed closer and closer, and moving faster and faster with less and less fluid, 
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possibly resulting in a singularity. The present calculations have not been able to 
answer this question, and we may note that for a real fluid the vortices always have 
a finite core and that viscosity presumably will greatly affect the long-time 
behaviour. 

While the transitional region, when the inertial forces due to the vortical motion 
and gravity are of roughly the same magnitude (note that this happens for a Froude 
number of the order unity), is in some sense the most interesting, the limits may have 
equally practical significance from an observational point of view. For example, a 
‘white water ’ region of splashes indicate strong vortices with lengthscales 
comparable to the disturbances, but gentle, wavy flow indicates weaker vortices 
where a one-to-one correspondence may not exist between the disturbance 
lengthscale and those of the vortical flow. Previous calculations of point vortex 
collision with a free surface have been limited to a few Froude numbers around the 
transition value and thus did not address what would happen for smaller or larger 
values of the Froude number. Furthermore, by considering only a single initial 
condition (two point vortices), no generalizations could be made. 

This study is our first step in an effort to develop a comprehensive understanding 
of the free-surface signature of submerged, unsteady vortical flows. The flows 
considered are therefore relatively simple, and we conclude with a few remarks about 
the limitations of this present study. The most restrictive assumption, presumably, 
is that we have confined our attention to two-dimensional models. While such models 
are relevant to certain experimental situations and produce considerable insight into 
some of the interaction mechanisms, most of the vortex interactions observed 
experimentally involve fully three-dimensional motions. In  the experiments of 
Sarpkaya (1986) and Hirsa (1990) on the surface signature of trailing vortices, for 
example, the appearance of striations is a three-dimensional phenomena. Also, in 
Bernal’s experiments with subsurface jets (Bernal & Madnia 1989) and vortex rings 
(Bernal & Kwon 1989), the predominant wave-making mechanism is the ‘opening 
up ’ of vortex rings colliding obliquely with the surface. These fully three-dimensional 
aspects are naturally outside the scope of our two-dimensional models, 

Another complication is the presence of surface contaminants on real free surfaces. 
Generally, the surface motion created by vortical flow results in an uneven 
distribution of the contaminants and thus non-uniform surface tension. While the 
effect of surface contaminants on the damping of surface waves is reasonably well 
understood, the effects on vortical structures below the free surface have received 
much less attention. Barker & Crow (1977) observed that a vortex pair colliding with 
the surface produces secondary vortices and rebounds, as when vortices collide with 
a rigid surface. Saffman (1979) pointed out that for inviscid flow and a flat boundary, 
rebounding cannot occur and suggested that the behaviour might be due to surface 
tension effects. On the basis of numerical simulations, Peace & Riley (1983) argued 
that even for stress-free boundaries, viscosity would cause rebounding. However, 
their calculations were for rather low Reynolds numbers, and with an increasing 
Reynolds number, the rebounding decreased significantly. 

Recent experimental studies by Bernal et al. (1989) have demonstrated a rather 
dramatic dependence on the cleanness of the surface. For a clean surface, the vortical 
motion behaves as would be expected from an inviscid analysis (if the surface 
deforms, some rebounding is predicted, but most of the experiments have been 
performed under conditions where surface deformation is minimal). But in the 
presence of surface contamination, the shear stress induced by uneven surface 
tension results in considerable vorticity production and subsequent boundary-layer 
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separation, whereby this vorticity is swept into the interior. This injection of 
vorticity and its subsequent interaction with the primary vorticity appears to be the 
leading effect of the surface contaminants. While our inviscid method is easily 
modified to account for constant surface tension (figures 6 and 13) and can easily 
predict the redistribution of a surface contaminant, the resulting shear stress is 
incompatible with the inviscid model. 
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